有界是什么意思
“有界”意思是若存在两个常数m和M,使函数y=f(x),x∈D满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
函数和数列均有:有界性。有界的意思是上下界都有,不是只要存在上界。有界数列,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。
一个数列{Xn},若既有上界又有下界,则称之为有界数列。
【资料图】
注意:当一个函数,如果在其整个定义域内有界,则称为有界函数。当一个函数有界时,它的上下界不唯一。由上面定义可知,任意小于m的数也是这个函数的下界,任意大于M的数也是这个函数的上界。
有界性的定义是什么?
函数的有界性 定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
一般来说,连续函数在闭区间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
什么是有界函数,无界函数?
高数中的有界无界指的是函数的定义域和值域可取的范围。
例如f(x)=sinx就是有界函数,你可以找到y=1和y=-1,夹住这个函数的图像。但g(x)=1/x就是无界函数,因为你无论找那条水平线,其函数图像都可以突破它。
有界的定义是什么?
有界的定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
“有界”意思是若存在两个常数m和M,使函数y=f(x),x∈D满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
函数的有界性 定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
有界性的定义是若存在两个常数m和M,使函数y=f(x),x∈D满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。函数的有界性是数学术语。
以上就是小编对什么是有界的相关信息分享,希望能对大家有所帮助。
关键词: